69书吧最新网址:www.69hao.com
首页 > 精品推荐 > 重启后我成了罗马人 > 第15章 林!你知道吗?你正在改变世界

第15章 林!你知道吗?你正在改变世界(1/2)

目录
好书推荐: 七零小娇娇,新婚一夜怀三宝! 诸天:始自吞噬星空 夏夜有染 我,修仙大佬强亿点怎么了 四合院重生,大国科技工匠 大侠別急,笑傲江湖先问问大明律 我的偃偶全是女邪祟 从反向攻略蝙蝠侠开始 60年代:开局荒年,我带着全村吃肉 趋吉避凶:从下下籤杀穿乱世

马库斯听到林枫提到“改进网络结构”时,愣了一下。

这话听起来似乎有些轻描淡写,在2014年,深度学习的结构问题是个热门话题,而大家都还在围绕如何改进已有的架构,比如cnn(卷积神经网络)和rnn(循环神经网络)展开討论。

大家都在想著要改进网络结构。

可要说“改进网络结构”,得具体到什么程度才能真正解决梯度消失问题呢?

他迟疑了一会儿,问道:“改进网络结构?你是说尝试新的层设计,还是在激活函数上进一步优化?”

林枫微微一笑,显得胸有成竹。

毕竟林枫关於人工智慧的知识量截止到2024,而现在才刚刚2014。

在2024年,解决梯度消失的核心技术已经有了突破性的进展,比如“残差网络”(resnet)的提出,在当时被认为是改写深度学习领域的一项技术。

但在2014年,这个概念还远未被提出。

林枫意识到自己可能正站在改变这一切的关键时刻。

“激活函数的优化確实重要,”林枫淡淡说道,“但我说的改进,更多是指在网络层次的设计上。你有没有想过,深层网络的问题不只是梯度传递不下去,而是信息本身也无法有效传播?信號在一层层中传递时,逐渐丟失了原本的重要信息,等到最后几层时,网络几乎是在『盲目学习』。”

“这个道理我懂,”马库斯点了点头,“但我们已经尝试了很多调整,比如增加跳层连接、在特定层使用更强的正则化,甚至尝试了不同的初始化方法,效果依旧有限。”

林枫暗自一笑,跳层连接?

看样子马库斯已经有了些残差网络的雏形思想,但还没触及真正的核心。

“你们是朝著正確的方向走的,”林枫说道,眼神中透著些许不易察觉的自信,“但或许你们忽略了一个更关键的概念。网络越深,信息传递的阻碍就越大,而如果我们在每几层之间构建直接的『捷径』,让信息不必层层传递,而是能够跨越几层直接回到前面的层,这样就能有效解决梯度消失的问题。”

“直接跨层?这……”马库斯有些困惑,“你的意思是跳过中间的层,让前面的输出直接输入到后面的层?这样网络的非线性特徵不就被打破了吗?”

“no,no,no”林枫轻轻摇头,“这种跨层连接並不是要完全替代中间层,而是让信息能够『绕过』那些不必要的损失点,从而减少梯度消失的机会。中间的层依然存在,依然发挥作用,但跳过的这些连接能够保证信息传递的稳定性。你可以把它想像成是给网络『加了一层保险』,避免重要信息在传递中被淹没。”

马库斯听得眼前一亮,这个思路与他们之前討论的跳层连接確实有些相似,但林枫描述的更为彻底。“跨层连接”和“跳层连接”不再只是简单的尝试,而是建立起一种全新的信息传递方式。

这种方式听起来既能保留深度网络的复杂性,又能有效应对梯度消失的问题。

“你说的这些……感觉像是网络中有个反馈机制,確保梯度和信息都能回流,维持学习的稳定性。”马库斯眼中闪过一丝兴奋,他直觉林枫正在讲述的东西,可能会是未来突破深层神经网络训练的关键。

林枫笑了笑,点了点头。

正是“反馈机制”的概念让残差网络得以解决深度神经网络中的许多瓶颈。

本章未完,点击下一页继续阅读。

目录
新书推荐: 大学生创业,这不是有手就行? 斩神:开局执掌命运,加入假面 红楼:朕贵为天子,开后宫怎么了 重生42血染逃荒路 明末,从西北再造天下 模拟:身化烈焰后,青梅后悔终生 我成为权臣死遁后,皇上黑化了 女尊:没有龙王命,偏有龙王病 我男异能废柴,绑定女神枪系统? 庆余年之范家嫡长子
返回顶部