第003章:无敌之人(2/2)
疑惑持续到下午第二节数学课。
他趴桌上睡得香甜。
也不知道怎么回事儿。
一上数学课,眼睛自然就闭上了。
【上课睡觉,奖励·函数入门】
许弋猛然睁开眼睛,脑海中凭空出现大量函数知识。
顷刻间,他从一个系统性知识欠缺的数学半文盲变成了函数学霸。
函数一道,他已经入门。
讲台上,数学老师一次小小的任性,难倒了全班同学。
『已知函数f(x)=ln(1+e^{2x})-2x/√(x2+1)-x定义域为定义域为(?∞,+∞),设函数g(x)= f(x)/(1 + k·f2(x)),其中 k>0为常数。
问题:
1.判断 f(x)在定义域內是否有界,並证明你的结论。
2.对任意 k>0,证明 g(x)在 r上一致有界。
3.求 g(x)值域的確切范围。』
“重点班,第一小题都不会吗?”
“课代表?”
被点名的张峻铭面露难色,侷促地摇了摇头。
对一个高二学生来说,这题属实超纲。
“答对有奖,休息日作业全免。”
数学老师紧接著看向其他人。
目光所到之处,眾將无不汗顏垂首。
寧晚晴贝齿咬笔盖,怔怔望著黑板上的公式出神。
片刻后轻嘆一声,泄气地揉了揉太阳穴。
臣妾做不到哇。
就在她决定放弃的时候,后排雅座传来一阵幽幽男声。
“f(x)无上界,g(x)的一致有界性,g(x)的值域为[0, 1/(2√k)]。”
寧晚晴下意识回头。
许弋那张玩世不恭的脸映入眼帘。
欸???
同学们齐刷刷回头。
看见许弋,一个个表情精彩极了。
张峻铭嗤之以鼻,露出讥笑。
一个美术生懂个屁的函数?
“装逼也不分场合。”
谁都可以,唯独许弋不行。
这就是口碑,也是班里共识。
即便是彬哥,也觉得许弋没活硬整的成分居多。
3、40分的选手怎么会这么难的题?
只有郑老师看法不同。
他端茶杯的手抖了一下,眼镜片上堆满了错愕。
答案…正確!!!
即使发挥野兽般的想像力,他也想不到解题人会是许弋。
一个刚爆出丑闻,疑似自暴自弃的美术生。
作业不交,上课睡觉,却解出了难倒全班的难题。
难他天?
刚丟了面子的张峻铭只觉得许弋的声音格外刺耳,嘴唇翘起打趣道:“哟呵,许弋也学会开玩笑啦,別浪费大家时间。”
阴阳谁呢,搁这装上了。
你是什么品种的阿其那、赛斯黑?
课代表好大的官威呀。
许弋懒得反应。
对於这种无关紧要的人和事,屏蔽掉就好。
郑老师按耐不住好奇心,举著粉笔示意许弋。
“来,上来讲讲你的思路。”
在一片怀疑和看热闹不嫌事大的注视下,许弋接过粉笔,在黑板上写了个龙飞凤舞的解。
细节点一下。
“首先,解剖 f(x)的结构…
当 x→?∞时…f(x)~ 2t *(1/(2t))= 1,即f(x)可能无界,最大值在有限区间取得…
f(0)=ln2?1≈0.693…
取 x=ln(e?1)配合小e分析可得无界。”
话说到这,许弋停下缓了一会儿。
不是思路乱了,而是给眾人梳理偏见的时间。
看著台下懵逼的眾人,成就感油然而生。
学霸的世界原来是这样的。
过癮的嘞!!!
同学们表情复杂到了极点。
认知割裂带来的衝击大得出奇,堪称顛覆式。
寧晚晴对许弋有所改观,顾盼间眉眼流露出异彩。
女人都是慕强的。
在她心目中,许弋的形象一下子鲜活了起来。
好像蒙上了一层神秘面纱,令人忍不住探寻。
数学不会就是不会,根本装不出来。
许弋的解题过程逻辑严密,条理清晰。
他是真会!
方向缺了南北,帅得有点东西。
教室后排,彬哥下巴都快掉地上,一度怀疑自己发小被人夺舍了。
不是,哥们儿?